The Influence of Large-Scale, High-Intensity Turbulence on Vane Aerodynamic Losses, Wake Growth, and the Exit Turbulence Parameters

Author:

Ames F. E.1,Plesniak M. W.2

Affiliation:

1. Allison Engine Company, Indianapolis, IN

2. School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907

Abstract

An experimental research program was undertaken to examine the influence of large-scale high-intensity turbulence on vane exit losses, wake growth, and exit turbulence characteristics. The experiment was conducted in a four-vane linear cascade at an exit Reynolds number of 800,000 based on chord length and an exit Mach number of 0.27. Exit measurements were made for four inlet turbulence conditions including a low-turbulence case (Tu ≈ 1 percent), a grid-generated turbulence case (Tu ≈ 7.5. percent) and two levels of large-scale turbulence generated with a mock combustor (Tu ≈ 12 and 8 percent). Exit total pressure surveys were taken at two locations to quantify total pressure losses. The suction surface boundary layer was also traversed to determine losses due to boundary layer growth. Losses occurred in the core of the flow for the elevated turbulence cases. The elevated free-stream turbulence was found to have a significant effect on wake growth. Generally, the wakes subjected to elevated free-stream turbulence were broader and had smaller peak velocity deficits. Reynolds stress profiles exhibited asymmetry in peak amplitudes about the wake centerline, which are attributable to differences in the evolution of the boundary layers on the pressure and suction surfaces of the vanes. The overall level of turbulence and dissipation inside the wakes and in the free stream was determined to document the rotor inlet boundary conditions. This is useful information for assessing rotor heat transfer and aerodynamics. Eddy diffusivities and mixing lengths were estimated using X-wire measurements of turbulent shear stress. The free-stream turbulence was found to strongly affect eddy diffusivities, and thus wake mixing. At the last measuring position, the average eddy diffusivity in the wake of the high-turbulence close combustor configuration (Tu ≈ 12) was three times that of the low turbulence wake.

Publisher

ASME International

Subject

Mechanical Engineering

Reference32 articles.

1. Ames, F. E., and Moffat, R. J., 1990, “Heat Transfer With High Intensity, Large Scale Turbulence: The Flat Plate Turbulent Boundary Layer and the Cylindrical Stagnation Point,” Report No. HMT-43, Thermosciences Division of Mechanical Engineering, Stanford University.

2. Ames, F. E., 1994, “Experimental Study of Vane Heat Transfer and Aerodynamics at Elevated Levels of Turbulence,” NASA CR 4633.

3. Ames F. E. , 1997, “The Effects of Large-Scale, High Intensity Turbulence on Vane Heat Transfer,” ASME JOURNAL OF TURBOMACHINERY, Vol. 119, p. 2323.

4. Arts, T., Lambert de Rouvroit, M., and Rutherford, A. W., 1990, “Aero-thermal Investigation of a Highly Loaded Transonic Linear Turbine Guide Vane Cascade,” Technical Note 174, von Karman Institute for Fluid Dynamics, Belgium.

5. Bicen A. F. , and JonesW. P., 1986, “Velocity Characteristics of Isothermal and Combusting Flows in a Model Combustor,” Combust. Sci. and Technology, Vol. 49, p. 11.

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3