Theoretical Model of the Mixture-Vapor Transition Point Oscillations Associated With Two-Phase Evaporating Flow Instabilities

Author:

Wedekind G. L.1,Beck B. T.1

Affiliation:

1. Oakland University, Rochester, Mich.

Abstract

A horizontal tube evaporator in which complete vaporization takes place can be divided into three distinct regions—a subcooled, a two-phase, and a superheat region. The mixture-vapor transition point corresponds to the liquid film dryout point, and when entrainment is negligible, it represents the boundary between the two-phase and superheat regions. Experimental evidence indicates that during what is conventionally accepted as steady flow conditions, the motion of the mixture-vapor transition point is of an oscillatory nature. Furthermore, not only are the oscillations random, but their statistical characteristics can be represented by a modified Rayleigh distribution. This paper presents the formulation of a theoretical model which incorporates various deterministic mechanisms, while at the same time includes the existence of a random phenomenon. The model has the capability of predicting the influence of evaporator heat flux and inlet flow quality on the statistical characteristics of the transition point oscillations. Perhaps, the most significant potential of the proposed model is that it represents a first step toward the formulation of some of the fundamental mechanisms associated with two-phase evaporating flow instabilities on a statistical basis; a basis which appears to be consistent with many of the experimental observations currently available.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3