Water Current Load on Arrays of Rectangular Plates

Author:

Lamei A.1,Hayatdavoodi M.23

Affiliation:

1. University of Dundee School of Science and Engineering, , Dundee DD1 4HN , UK

2. University of Dundee School of Science and Engineering, , Dundee DD1 4HN , UK ;

3. Harbin Engineering University College of shipbuilding Engineering, , Harbin 150001 , China

Abstract

Abstract Water current interaction with arrays of plates is studied by use of the computational fluid dynamics focusing on hydrokinetic energy production applications. Various configurations of arrays of equidistant rectangular plates are considered. The velocity and the pressure fields around an array of plates are determined, and the forces on individual plates are computed and compared with the empirical relations. It is found that the current-induced force on the leading plate in the array is substantially different from those on the downstream plates, which may experience negative forces, due to the change of the flow field. In three parametric studies, the effect of plate spacing, the number of plates, and the relative water depth on the current-induced forces is investigated. It is shown that the relative size of the plates and the number of plates in an array play a significant role on the current-induced loads. Finally, the relative direction of the plates and the incoming flow is changed, and its effect on the hydrodynamic forces on the plates is studied in a three-dimensional computational tank. The current loads on an oriented set of plates is shown to be remarkably different, when compared with those perpendicular to the current direction. It is concluded that the current-induced loads on an array of plates cannot be estimated by empirical relations, and specific computations, similar to those shown here, or laboratory experiments are required to investigate the current loads.

Publisher

ASME International

Subject

Mechanical Engineering,Ocean Engineering

Reference30 articles.

1. Hydrokinetic Energy Conversion Systems: A Technology Status Review;Yuce;Renewable. Sustainable. Energy. Rev.,2015

2. Hydrokinetic Energy Harnessing Technologies: A Review;Ibrahim;Energy Rep.,2021

3. Renewables 2020 Global Status Report;REN21 Renewables Now,2020

4. Advances and Trends in Hydrokinetic Turbine Systems;Lago;Energy Sustain. Dev.,2010

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3