LES Study of the Influence of a Train-Nose Shape on the Flow Structures Under Cross-Wind Conditions

Author:

Hemida Hassan1,Krajnović Siniša1

Affiliation:

1. Division of Fluid Dynamics, Department of Applied Mechanics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden

Abstract

Cross-wind flows around two simplified high-speed trains with different nose shapes are studied using large-eddy simulation (LES) with the standard Smagorinsky model. The Reynolds number is 3×105 based on the height of the train and the freestream velocity. The cross section and the length of the two train models are identical while one model has a nose length twice that of the other. The three-dimensional effects of the nose on the flow structures in the wake and on the aerodynamic quantities such as lift and side force coefficients, flow patterns, local pressure coefficient, and wake frequencies are investigated. The short-nose train simulation shows highly unsteady and three-dimensional flow around the nose yielding more vortex structures in the wake. These structures result in a surface flow that differs from that in the long-nose train flow. They also influence the dominating frequencies that arise due to the shear-layer instabilities. Prediction of vortex shedding, flow patterns in the train surface, and time-averaged pressure distribution obtained from the long-nose train simulation are in good agreement with the available experimental data.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 80 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3