A Kinetic Investigation of the Role of Changes in the Composition of Natural Gas in Engine Applications

Author:

Khalil E. B.1,Karim G. A.1

Affiliation:

1. Department of Mechanical Engineering, The University of Calgary, Calgary T2N 1N4, Canada

Abstract

The influence of variations in the composition of natural gas on the ignition and combustion processes in engines is investigated. Particular attention is given to changes in the relatively small concentrations of high molar mass alkanes that may be present in the fuel. A detailed chemical kinetic scheme for the oxidation of the higher hydrocarbon components of up to n-heptane was used to investigate analytically the combustion reactions of different fuel mixtures under constant volume adiabatic conditions with initial states that are similar to those during the ignition delay of a typical internal combustion engine. These comprehensive simulation calculations require much computing capacity and time that would preclude their incorporation in full simulation models of engine processes. A simplification is introduced based on replacing artificially the small concentrations of any higher hydrocarbons that may be present in the natural gas by a kinetically equivalent amount of propane in the fuel mixture. This is done such that the resulting equivalent fuel has the same ignition delay as the original fuel under constant volume engine T.D.C. conditions. This “propane equivalent” concept was used in full engine simulation models while employing a relatively short scheme of 150 steps for the oxidation of fuel mixtures of propane, ethane, and methane in air.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference20 articles.

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3