Stochastic Analysis of Microgrinding Tool Topography and Its Role in Surface Generation

Author:

Anandita S.1,Mote Rakesh G.1,Singh Ramesh2

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India e-mail:

2. Mem. ASME Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India e-mail:

Abstract

With the rising trend of miniaturization in modern industries, micro manufacturing processes have made a significant position in the manufacturing domain. Demands of high precision along with super finish of the final machined product have started rising. Grinding, being largely considered as a finishing operation, has large potential to cater to such requirements of micro manufacturing. However, stochastic nature of the grinding wheel topography results in a high degree of variation in the output responses especially in the case of microgrinding. With an aim to obtain a good and predictable surface finish in brittle materials, the current study aims at developing a surface generation model for wall grinding of hard and brittle materials using a microgrinding tool. Tool topographical features such as grit protrusion height, intergrit spacing, and grit distribution on the tool tip of a microgrinding pin have been calculated from the known mesh size of the grits used during tool manufacturing. Kinematic analysis of surface grinding has been extended to the case of wall grinding and each grit trajectory has been predicted. The kinematic analysis has been done by taking into consideration the effect of tool topographical features and the process parameters on the ground surface topography. Detailed analysis of the interaction of the grit trajectories is done to predict the final surface profile. The predicted surface roughness has been validated with the experimental results to provide an insight to the surface quality that can be produced for a given tool topography.

Publisher

ASME International

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3