Affiliation:
1. Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Ind.
Abstract
An experimental and theoretical investigation of the interaction of gaseous thermal radiation with natural convection was made for a laminar methane-air diffusion flame in the lower stagnation region of a horizontal porous cylinder. The exponential wide-hand gas radiation model was employed in this nonhomogeneous (nonuniform in temperature and composition) problem through the use of scaling techniques. Using a numerical scheme, the compressible energy, flow, and species-diffusion equations were solved simultaneously with and without the radiative component. In the experiment, methane was blown uniformly from the surface of the porous cylinder, setting up (upon ignition) a diffusion flame within the free-convection boundary layer. Using a Mach-Zehnder interferometer and a gas chromatograph, temperature and composition measurements were obtained along the stagnation line. Excellent agreement was found between the results based on the nongray wide-band model and the experimental data. Furthermore, it was found that the wide-band model yielded results that were superior to those results that excluded radiation-interaction effects. Thus, this study demonstrates that the exponential wide-band model can be accurately applied to nonhomogeneous combustion situations in order to account for the radiation-convection interactions.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献