Investigation of Different Operation Strategies to Provide Balance Energy With an Industrial Combined Heat and Power Plant Using Dynamic Simulation

Author:

Kahlert Steffen1,Spliethoff Hartmut2

Affiliation:

1. Institute for Energy Systems, Technical University of Munich, Boltzmannstr. 15, Garching bei München 85748, Germany e-mail:

2. Institute for Energy Systems/ZAE Bayern, Technical University of Munich, Boltzmannstr. 15, Garching bei München 85748, Germany e-mail:

Abstract

Intermittency of renewable electricity generation poses a challenge to thermal power plants. While power plants in the public sector see a decrease in operating hours, the utilization of industrial power plants is mostly unaffected because process steam has to be provided. This study investigates to what extent the load of a combined heat and power (CHP) plant can be reduced while maintaining a reliable process steam supply. A dynamic process model of an industrial combined CHP plant is developed and validated with operational data. The model contains a gas turbine (GT), a single pressure heat recovery system generator (HRSG) with supplementary firing and an extraction condensing steam turbine. Technical limitations of the gas turbine, the supplementary firing, and the steam turbine constrain the load range of the plant. In consideration of these constraints, different operation strategies are performed at variable loads using dynamic simulation. A simulation study shows feasible load changes in 5 min for provision of secondary control reserve (SCR). The load change capability of the combined cycle plant under consideration is mainly restricted by the water–steam cycle. It is shown that both the low pressure control valve (LPCV) of the extraction steam turbine and the high pressure bypass control valve are suitable to ensure the process steam supply during the load change. The controllability of the steam turbine load and the process stability are sufficient as long as the supplementary is not reaching the limits of the operating range.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3