Thermal Conductivity of Single-Walled Carbon Nanotube/PMMA Nanocomposites

Author:

Guthy Csaba1,Du Fangming2,Brand Stijn1,Winey Karen I.3,Fischer John E.1

Affiliation:

1. Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA 19104-6272

2. Chemical and Biomolecular Engineering, University of Pennsylvania, 220 South 33rd Street, Philadelphia, PA 19104-6393

3. Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA 19104-6272; Chemical and Biomolecular Engineering, University of Pennsylvania, 220 South 33rd Street, Philadelphia, PA 19104-6393

Abstract

Single-walled carbon nanotubes (SWNTs) are considered as promising filler materials for improving the thermal conductivity of conventional polymers. We carefully investigated the thermal conductivity of SWNT poly(methylmethacrylate) (PMMA) nanocomposites with random SWNT orientations and loading up to 9vol% using the comparative technique. The composites were prepared by coagulation and exhibit ∼250% improvement in the thermal conductivity at 9vol%. The experimental results were analyzed using the versatile Nielsen model, which accounts for many important factors, including filler aspect ratio and maximum packing fraction. In this work, the aspect ratio was determined by atomic force microscopy (AFM) and used as an input parameter in the Nielsen model. We obtained good agreement between our results and the predictions of the Nielsen model, which indicates that higher aspect ratio fillers are needed to achieve further enhancement. Our analysis also suggests that improved thermal contact between the SWNT network and the matrix material would be beneficial.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3