Casing Treatment and Blade Tip Configuration Effects on Controlled Gas Turbine Blade Tip/Shroud Rubs at Engine Conditions

Author:

Padova Corso1,Dunn Michael G.1,Barton Jeffery1,Turner Kevin2,Turner Alan2,DiTommaso Darin2

Affiliation:

1. Ohio State University, Columbus, OH

2. GE Aviation, Cincinnati, OH

Abstract

Experimental results obtained for an Inconel compressor blade rubbing bare-steel and treated casings at engine speed are described. Since 2002 a number of experiments were conducted to generate a broad database for tip rubs, the Rotor-Blade Rub Database (RBR database) obtained using the unique experimental facility at the OSU Gas Turbine Laboratory. As of 2007, there are seven completed groups of measurements in the database. Among them a number of blade-tip geometries and casing surface treatments have been investigated. The purpose of this paper is to provide a detailed interpretation of this database. Load cell, strain, temperature and accelerometer measurements are discussed and then applied to analyze the interactions resulting from progressive and sudden incursions of varying severity, defined by incursion depths ranging from 13 μm to 762 μm (0.0005 in to 0.030 in). The influence of blade-tip speed on these measurements is described. The results presented describe the dynamics of rotor and casing vibro-impact response at representative operational speeds similar to those experienced in flight. Force components at the blade tip in the axial and circumferential directions are presented for rub incursions ranging in depth from very light (13 μm) to severe (406 μm). Trends of variation are observed during metal-to-metal and metal-to-abradable contacts for two airfoil tip shapes and tip speed 390 m/s (1280 ft/s) and 180 m/s (590 ft/s). The non-linear nature of the rub phenomena reported in earlier work is confirmed. In progressing from light rubs to higher incursion, the maximum incurred circumferential load increases significantly while the maximum incurred axial load increases much less. The manner in which casing surface treatment affects the loads is presented. Concurrently, the stress magnification on the rubbing blade at root mid-chord, at tip leading edge, and at tip trailing edge is discussed. Computational models to analyze the non-linear dynamic response of a rotating beam with periodic pulse loading at the free-end are currently under development and are noted. A companion paper on a method to determine blade tip forces is presented separately in this Turbo Expo conference.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3