Active Aerodynamic Load Control of Wind Turbine Blades

Author:

Berg Dale E.1,Zayas Jose R.1,Lobitz Donald W.1,van Dam C. P.2,Chow Raymond2,Baker Jonathon P.2

Affiliation:

1. Sandia National Laboratories, Albuquerque, NM

2. University of Calfornia at Davis, Davis, CA

Abstract

The cost of wind-generated electricity can be reduced by mitigating fatigue loads acting on the rotor blades of wind turbines. One way to accomplish this is with active aerodynamic load control devices that supplement the load control obtainable with current full-span pitch control. Thin airfoil theory suggests that such devices will be more effective if they are located near the blade trailing edge. While considerable effort in Europe is concentrating on the capability of conventional trailing edge flaps to control these loads, our effort is concentrating on very small devices, called microtabs, that produce similar effects. This paper discusses the work we have done on microtabs, including a recent simulation that illustrates the large impact these small devices can exert on a blade. Although microtabs show promise for this application, significant challenges must be overcome before they can be demonstrated to be a viable, cost-effective technology.

Publisher

ASMEDC

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3