Development and Dynamic State Estimation for Robotic Knee–Ankle Orthosis With Shape Memory Alloy Actuators

Author:

Sun Zhi1,Li Yuan1,Zi Bin1,Chen Bing1

Affiliation:

1. Hefei University of Technology School of Mechanical Engineering, , Hefei 230009 , China

Abstract

Abstract The development of rehabilitation robots has long been an issue of increasing interest in a wide range of fields. An important aspect of the ongoing research field is applying flexible components to rehabilitation equipment to enhance human−machine interaction. Another major challenge is to accurately estimate the individual’s intention to achieve safe operation and efficient training. In this article, a robotic knee−ankle orthosis (KAO) with shape memory alloy (SMA) actuators is developed, and the estimation method is proposed to determine the joint torque. First, based on the analysis of human lower limb structure and walking patterns, the mechanical design of the KAO that can achieve various rehabilitation training modes is detailed. Next, the dynamic model of the hybrid-driven KAO is established using the thermodynamic constitutive equation and Lagrange formalism. In addition, the joint torque estimation is realized by the nonlinear Kalman filter method. Finally, the prototype and human subject experiments are conducted, and the experimental results demonstrate that the KAO can assist lower limb movements. In the three experimental scenarios, reductions of 59.1%, 16.5%, and 73% of the torque estimation error during the knee joint movement are observed, respectively.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3