Affiliation:
1. von Karman Institute for Fluid Dynamics , Sint-Genesius-Rode, Belgium
Abstract
Abstract
In this two-part paper, a novel test-case for transonic low-pressure turbines (LPT) is presented. The current study is a comprehensive report on the design, commissioning and testing of a high-speed LPT cascade. Part II reports the characterization of the aerodynamics at on- and off-design flow conditions.
A detailed analysis of the steady aerodynamics of the highspeed low-pressure turbine blade is presented for a range of engine representative outlet Mach numbers from 0.70 to 0.95 and Reynolds numbers from 65,000 to 120,000. The blade 3D aerodynamics are characterized using an innovative set of traversable blades, enabling high-resolution radial measurements. A novel method to estimate the location of separation-reattachment based on pneumatic tap measurements is presented. The separation on the blade suction side is strongly influenced by the Reynolds number at the lower Mach numbers, while open separations were observed at transonic exit conditions independently on the Reynolds number.
Downstream measurements by means of a five-hole probe, and pressure taps located in the passage endwall are employed to study the secondary flow development and structures at the cascade outlet. The results show that the losses follow different trends at high and low Reynolds numbers. The profile losses at Re = 70k decrease with increasing Mach number, contrary to what is observed for Re = 120k. The minimum secondary flow losses are found for an off-design condition with lower Mach number with respect to the nominal. The off-design comparisons presented in this paper indicate that at low Reynolds, operating at transonic outlet Mach numbers leads to beneficial effects on the performance.
Publisher
American Society of Mechanical Engineers
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献