Tunable Three-Dimensional Vibrational Structures for Concurrent Determination of Thin Film Modulus and Density

Author:

Wang Hairui1,Wei Chen2,Zhang Yao3,Ma Yinji1,Chen Ying4,Wang Heling4,Feng Xue1

Affiliation:

1. Center for Flexible Electronics Technology, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China

2. Department of Mechanical and Aerospace Engineering, Univerity of California Los Angeles, Los Angeles, CA 90095

3. Center for Flexible Electronics Technology, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100080, China

4. Institute of Flexible Electronics Technology of THU, Jiaxing, Zhejiang 314000, China

Abstract

Abstract The real-time characterization of thin film properties can provide insights into the behavior of film material during process such as phase-transition, hydration, and chemical reaction. The shift of reasonant frequency in structural vibration serves as the basis of an effective approach to determine film properties, but encounters the difficulty that multiple to-be-determined quantites (e.g., film modulus and density) are often related to the resonant frequency simultaneously and therefore cannot be determined by a structure with fixed shape and vibration mode. Determinsitic mechanical buckling provides an effective route for the vibrational structure to rapidly switch between designed shapes and vibration modes. Here, we adopt a ribbon structure in the flat state and buckled state to yield two distinct vibration modes. Theoretical models of the natural frequencies are established for first-order out-of-plane modes of the ribbon with patterned thin films in these two states, respectively. The model suggests that with optimized film pattern the sensitivity of the natural frequencies to the film modulus and density can be partially decoupled. The results lead to a simple and effective method based on tunable vibration to characterize the thin film modulus and density at small scale.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3