An Energy Efficient Power-Split Hybrid Transmission System to Drive Hydraulic Implements in Construction Machines

Author:

Bertolin Mateus1,Vacca Andrea1

Affiliation:

1. Maha Fluid Power Research Center, Purdue University, 1500 Kepner Drive, Lafayette, IN 47905

Abstract

Abstract This paper proposes a novel hybrid power-split transmission to drive hydraulic implements in construction machinery. The highly efficient power-split hybrid transmission is combined with displacement-controlled (DC) actuators to eliminate throttling losses within the hydraulic system and achieve higher fuel savings. The architecture design, sizing, and power-management are addressed. Simulation results considering a realistic truck-loading cycle on a mini-excavator demonstrate the feasibility of the idea. A systematic comparison between the proposed system and the previously developed series–parallel hybrid is also carried out. The paper compares engine operation and fuel consumption of the previously mentioned hybrid system with the original nonhybrid load-sensing (LS) machine. It is shown that by implementing an efficient engine operation control, the proposed system can achieve up to 60.2% improvement in fuel consumption when compared to the original machine and consume 11.8% less than the previously developed series–parallel hybrid with DC actuation. Other advantages of the proposed solution include a much steadier engine operation, which open to the possibility of designing an engine for optimal consumption and emissions at a single operating point as well as greatly reduce pollutant emissions. A steadier prime mover operation should also benefit fully electric machines, as the battery would not be stressed with heavy transients.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Reference25 articles.

1. Energy Saving Solutions for a Hydraulic Excavator,2017

2. STEAM—A Mobile Hydraulic System With Engine Integration,2013

3. STEAM—A Hydraulic Hybrid Architecture for Excavators,2016

4. A Hydraulic Hybrid Excavator Based on Multi-Chamber Cylinders and Secondary Control—Design and Experimental Validation;Int. J. Fluid Power,2018

5. Displacement-Controlled Hydraulic System for Multi-Function Machines,2012

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3