Uncertainty Quantification, Rare Events, and Mission Optimization: Stochastic Variations of Metal Temperature During a Transient

Author:

Montomoli F.1,Amirante D.1,Hills N.1,Shahpar S.2,Massini M.1

Affiliation:

1. University of Surrey, Guildford GU2 7XH, UK

2. Rolls-Royce plc, Derby DE24 8BJ, UK

Abstract

Gas turbines are designed to follow specific missions and the metal temperature is usually predicted with deterministic methods. However, in the real life, the mission is subjected to strong variations which can affect the thermal response of the components. This paper presents a stochastic analysis of the metal temperature variations during a gas turbine transient. A Monte Carlo method (MCM) with meta-model is used to evaluate the probability distribution of the stator disk temperature. The MCM is applied to a series of computational fluid dynamics (CFD) simulations of a stator well, whose geometry is modified according to the deformations predicted during the engine cycle by a coupled thermomechanical analysis of the metal components. It is shown that even considering a narrow band for the stochastic output, ±σ, the transient thermal gradients can be up to two orders of magnitude greater than those obtained with a standard deterministic analysis. Moreover, a small variation in the tail of the input probability density function (PDF), a rare event, can have serious consequences on the uncertainty level of the temperature. Rare events although inevitable they are not usually considered during the design phase. In this paper, it is shown for the first time that is possible to mitigate their effect, minimizing the maximum standard deviation induced by the tail of the input PDF. The mission optimization reduces the maximum standard deviation by 15% and the mean standard deviation of about 12%. The maximum thermal gradients are also reduced by 10%, although this was not the parameter used as the goal in the optimization study.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3