Enhance Road Detection Data Processing of LiDAR Point Clouds to Specifically Identify Unmarked Gravel Rural Roads

Author:

Huston Rhett G.1,Wilhelm Jay P.1

Affiliation:

1. Ohio University Mechanical Engineering, , Athens, OH 45701

Abstract

Abstract Gravel roads lack standardized features such as curbs or painted lines, presenting detection challenges to autonomous vehicles. Global positioning service (GPS) and high resolution maps may not be reliable for navigation of gravel roads, as some roads may only be width of the vehicle and GPS may not be accurate enough. Normal distribution transform (NDT) LiDAR scan matching may be insufficient for navigating on gravel roads as there may not be enough geometrically distinct features for reliable scan matching. This paper examined a method of classifying scanning LiDAR spatial and remission data features for explicit detection of unmarked gravel road surfaces. Exploration of terrain classification using high resolution scanning LiDAR data of specific road surfaces may allow for predicting gravel road boundary locations potentially enabling confident autonomous operations on gravel roads. The principal outcome of this work was a method for gravel road terrain detection using LiDAR data for the purpose of predicting potential road boundary locations. Random decision forests were trained using scanning LiDAR data terrain classification to detect unmarked gravel and asphalt surfaces. It was found that a true-positive accuracy for gravel and asphalt surfaces was 75% and 87%, respectively, at an estimated rate of 13 ms per 360 deg scan. Overlapping results between manually projected and actual road surface areas resulted in 93% intersecting gravel road detection accuracy. Automated post-process examination of classification results yielded an true-positive gravel road detection rate of 72%.

Publisher

ASME International

Reference68 articles.

1. Literature Review on Gravel Road Maintenance: Current State and Directions for Future Research;Mbiyana;Transp. Res. Rec.,2023

2. Rural Roads in India: An Overview of Connectivity Status;Medhi;South-Asian J. Multidiscipl. Stud.,2015

3. Autonomous Vehicle Navigation in Rural Environments Without Detailed Prior Maps;Ort,2018

4. Rural Positioning Challenges for Connected and Autonomous Vehicles;Walters,2019

5. SCARF: A Color Vision System That Tracks Roads and Intersections;Crisman;IEEE Trans. Rob. Autom.,1993

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3