Exergy Analysis of an Industrial Waste Heat Recovery Based Cogeneration Cycle for Combined Production of Power and Refrigeration

Author:

Khaliq A.1,Kumar R.2,Dincer I.3

Affiliation:

1. Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 Simcoe Street, N. Oshawa, ON, LIH 7K4, Canada

2. Amity School of Engineering and Technology, GGSIPU, New Delhi 110061, India

3. Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 Simcoe Street, North Oshawa, ON, LIH 7K4, Canada

Abstract

In this paper, a novel industrial waste heat recovery based cogeneration is proposed for the combined production of power and refrigeration. The system is an integration of Rankine power cycle and absorption refrigeration cycle. A thermodynamic analysis through energy and exergy is employed, and a comprehensive parametric study is performed to investigate the effects of exhaust gas inlet temperature, pinch-point, and gas composition on energy efficiency, power-to-cold ratio, and exergy efficiency of the cogeneration cycle and exergy destruction in each component. The variation in specific heat with exhaust gas composition and temperature is accounted in the analysis for further discussion. The first-law efficiency decreases while power-to-cold ratio and exergy efficiency increase with increasing exhaust gas inlet temperature. The parameters, such as power-to-cold ratio and second-law efficiency, decrease while first-law efficiency increases with increasing pinch-point. Exergy efficiency significantly varies with gas composition and oxygen content of the exhaust gas. Approximating the exhaust gas as air, and the air standard analysis leads to either underestimation or overestimation of cogeneration cycle performance on exergy point of view. Exergy analysis indicates that maximum exergy is destroyed during the steam generation process; which represents around 40% of the total exergy destruction in the overall system. The exergy destruction in each component of the system varies significantly with exhaust gas inlet temperature and pinch-point. The present analysis contributes further information on the role of composition, exhaust gas temperature, and pinch-point influence on the performance of a waste heat recovery based cogeneration system from an exergy point of view.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference19 articles.

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3