FrameGraph: A Scalable Performance Evaluation Method for Frame Structure Designs Using Graph Neural Network

Author:

Hou Wenbin12,Li Yongcheng3,Wang Changsheng3

Affiliation:

1. Dalian University of Technology School of Mechanical Engineering, State Key Laboratory of Structural Analysis Optimization and CAE Software for Industrial Equipment, , Dalian 116024 , China ;

2. Ningbo Institute of Dalian University of Technology , Ningbo 315016 , China

3. Dalian University of Technology School of Mechanical Engineering, State Key Laboratory of Structural Analysis Optimization and CAE Software for Industrial Equipment, , Dalian 116024 , China

Abstract

Abstract Multilayer perceptron (MLP) and convolutional neural network (CNN) encounter a critical scalability issue when applied to the performance evaluation task for frame structure designs. Specifically, a model of MLP or CNN is limited to structures of a particular topology type and fails immediately when applied to other topology types. In order to tackle this challenge, we propose a scalable performance evaluation method (called FrameGraph) for frame structure designs using graph neural network (GNN), offering applicability to a wide range of topology types simultaneously. FrameGraph consists of two main parts: (1) Components and their connections in a frame structure are denoted as edges and vertices in a graph, respectively. Subsequently, a graph dataset for frame structure designs with different topologies is constructed. (2) A well-defined GNN design space is established with a general GNN layer, and a controlled random search approach is employed to derive the optimal GNN model for this performance evaluation task. In numerical experiments of car door frames and car body frames, FrameGraph achieved the highest prediction precisions (96.28% and 97.87%) across all structural topologies compared to a series of classical GNN algorithms. Furthermore, the comparison with MLP and FEM highlighted FrameGraph's significant efficiency advantage. This verifies the feasibility and optimality of FrameGraph for the performance evaluation task of frame structures with different topologies.

Funder

National Natural Science Foundation of China

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3