Film Cooling With Compound Angle Holes: Adiabatic Effectiveness

Author:

Schmidt Donald L.1,Sen Basav1,Bogard David G.1

Affiliation:

1. University of Texas, Austin, TX

Abstract

Film cooling effectiveness was studied experimentally in a flat plate test facility with zero pressure gradient using a single row of inclined holes which injected high density, cryogenically cooled air. Round holes and holes with a diffusing expanded exit were directed laterally away from the freestream direction with a compound angle of 60°. Comparisons were made with a baseline case of round holes aligned with the freestream. The effects of doubling the hole spacing to six hole diameters for each geometry were also examined. Experiments were performed at a density ratio of 1.6 with a range of blowing ratios from 0.5 to 2.5 and momentum flux ratios from 0.16 to 3.9. Lateral distributions of adiabatic effectiveness results were determined at streamwise distances from 3 D to 15 D downstream of the injection holes. All hole geometries had similar maximum spatially averaged effectiveness at a low momentum flux ratio of I = 0.25, but the round and expanded exit holes with compound angle had significantly greater effectiveness at larger momentum flux ratios. The compound angle holes with expanded exits had a much improved lateral distribution of coolant near the hole for all momentum flux ratios.

Publisher

American Society of Mechanical Engineers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3