Hotspot Thermal Management With Flow Boiling of Refrigerant in Ultrasmall Microgaps

Author:

Nasr Mohamed H.1,Green Craig E.1,Kottke Peter A.1,Zhang Xuchen2,Sarvey Thomas E.2,Joshi Yogendra K.1,Bakir Muhannad S.2,Fedorov Andrei G.3

Affiliation:

1. George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332

2. School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332

3. George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 e-mail:

Abstract

As integration levels increase in next generation electronics, high power density devices become more susceptible to hotspot formation, which often imposes a thermal limitation on performance. Flow boiling of R134a in two microgap heat sink configurations was investigated as a solution for hotspot thermal management: a bare microgap and inline micro-pin fin populated microgap, both with 10 μm gap height, were tested in terms of their ability to dissipate heat fluxes approaching 5 kW/cm2 at the heat source. Additional parameters investigated include mass fluxes up to 3000 kg/m2 s at inlet pressures up to 1.5 MPa and exit qualities approaching unity. The microgap testbeds investigated consist of a silicon layer which is heated from the bottom using resistive heaters and capped with glass to enable visual observation of two-phase flow regimes. Wall temperature, device thermal resistance, and pressure drop results are presented and mapped to the dominant flow regimes that were observed in the microgap.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3