Parametric Investigation of the Flow-Sound Interaction Mechanism for Single Cylinders in Cross-Flow

Author:

Afifi Omar1,Mohany Atef1

Affiliation:

1. Aeroacoustics and Noise Control Laboratory, Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, Oshawa, ON L1G 0C5, Canada

Abstract

Abstract Flow-excited acoustic resonance is a design concern in many industrial applications. If not treated, it may lead to excessive vibrational loads, which could subsequently result in premature structural failure of critical equipment. For the case of tube bundles in heat exchangers, several acoustic damping criteria were proposed in the literature to predict the occurrence of resonance excitation. However, these criteria, in some cases, are not reliable in differentiating between the resonant and nonresonant cases. A primary reason for that is the geometrical differences between reduced scale models and full-scale tube bundles, and their effect on the flow-sound interaction mechanism. Therefore, the effect of two geometrical aspects, namely, the duct height and the cylinder diameter, on the self-excited acoustic resonance for single cylinders in cross-flow is experimentally investigated in this work. Changing the duct height changes the natural frequency of the excited acoustic modes and the duct's acoustic damping and radiation losses. Changing the cylinder diameter changes the flow velocity at frequency coincidence, the pressure drop, and Reynolds number. It is found that increasing the duct height decreases the acoustic impedance, which makes the system more susceptible to resonance excitation. This, in turn, changes the magnitude of the acoustic pressure at resonance, even for cases where the dynamic head of the flow is kept constant. The acoustic attenuation due to visco-thermal losses is quantified theoretically using Kirchhoff's acoustical damping model, which takes into account the geometrical aspects of the different ducts. Results from the experiments are compared with the acoustic damping criteria from the literature for similar cases. It is revealed that the height of the duct is an important parameter that should be included in damping criteria proposed for tube bundles of heat exchangers, as it controls the acoustic damping and radiation losses of the system, which have been over-looked in the past.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Reference34 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3