Improved Quantification of Exergy Destruction in Mechanical Cooling Tower Considering All Tower Inlet Parameters

Author:

Singh Kuljeet1,Das Ranjan1

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India e-mail:

Abstract

The present work establishes an improved experimentally validated analysis to predict performance and exergy-related parameters of a mechanical draft cooling tower involving wooden splash fills. Unlike earlier studies, which accounted for the effect of at most three tower inlet parameters for the exergy analysis, the present study simultaneously considers all five inlet parameters affecting the tower exergy performance. To simultaneously predict outlet air and water conditions, an optimization algorithm involving discrete functions of dry- and wet-bulb temperatures is used in conjunction with the mathematical model derived from mass and energy conservations within the control volume involving Bosnjakovic correlation. From practical point of view, five inlet parameters such as dry-bulb temperature, relative humidity, water temperature, water, and air flow rates are selected for the exergy analysis. Thereafter, the influence of all inlet parameters on the tower performance is analyzed on various important exergy-related factors. The quantitative analysis reveals that the inlet air humidity, water inlet temperature, and the inlet water mass flow rate significantly influence the air and water exergy changes. The present study also reveals that among the five inlet parameters, the water temperature, air humidity, and air mass flow rate are primarily responsible for the exergy destruction. Furthermore, it is observed that the second law efficiency is mainly governed by the inlet air flow rate. The present study is proposed to be useful for selecting the tower inlet parameters to improve exergy performance of mechanical cooling towers.

Funder

Ministry of Human Resource Development

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3