Confined Thin Film Delamination in the Presence of Intersurface Forces With Finite Range and Magnitude

Author:

Wan Kai-tak1,Julien Scott E.1

Affiliation:

1. Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115

Abstract

Abstract A circular membrane clamped at the periphery is allowed to adhere to or to delaminate from a planar surface of a cylindrical punch in the presence of intersurface forces with finite range and magnitude. Assuming a uniform disjoining pressure within the cohesive zone at the delamination front, the adhesion-delamination mechanics is obtained by a thermodynamic energy balance. Interrelations between the instantaneous applied load, punch displacement, and contact circle, and the resulting critical thresholds of “pinch-off,” “pull-off,” and “pull-in” are derived from the first principles. Two limiting cases are obtained: (i) intersurface force with long range and small magnitude in reminiscence of the classical Derjaguin–Muller–Toporov (DMT) model and (ii) short range and large magnitude alluding to the Johnson–Kendall–Roberts (JKR) model. The DMT-JKR transitional behavior has significant impacts on adhesion measurements, micro-electromechanical systems, and life-sciences.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adherence of a hyperelastic shell on a rigid planar substrate;International Journal of Solids and Structures;2022-02

2. Effect of pressure on pull-off of flat cylindrical punch adhered to circular membrane;The Journal of Adhesion;2021-05-04

3. Adhesion between a rigid sphere and a stretched membrane using the Dugdale model;International Journal of Solids and Structures;2021-01

4. Intersurface Adhesion in the Presence of Capillary Condensation;Journal of Applied Mechanics;2018-04-04

5. Revisiting the Constrained Blister Test to Measure Thin Film Adhesion;Journal of Applied Mechanics;2017-05-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3