Combustion Characteristics of a Can Combustor With a Rotating Casing for an Innovative Micro Gas Turbine

Author:

Shih Hsin-Yi1,Liu Chi-Rong1

Affiliation:

1. Department of Mechanical Engineering, Chang Gung University, Taoyuan 333, Taiwan

Abstract

A can type combustor with a rotating casing for an innovative micro gas turbine has been modeled, and the combustion characteristics were investigated. The simulations were performed using commercial code STAR-CD, in which a three-dimensional compressible k-ε turbulent flow model and a one-step overall chemical reaction between methane/air were used. The results include the detailed flame structure at different rotation speeds of outside casing, ranging from stationary to the maximum speed of 58,000 rpm of the design point. The airflows are baffled when entering the combustor through the linear holes due to the centrifugal force caused by the rotating casing, and the inlet flow angle is inclined. When the rotation is in the opposite direction of the swirling flows driven by the designed swirler, a shorter but broader recirculation zone and a concave shape flame are found at a higher rotating speed. At maximum rotating speed, the swirling flows are dominated by the rotating flows caused by the casing, especially downstream of the combustor. The combustor performance was also analyzed, indicating a higher combustion efficiency and higher exit temperature when the casing rotates, which benefits the performance of the gas turbine, but the cooling and possible hot spots for turbines are the primary concerns.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference12 articles.

1. Little, A. D. , 2000, “Opportunity of Micropower and Fuel Cell/Gas Turbine Hybrid Systems in Industrial Applications,” DOE Report No. 85X–TA009V.

2. 2003, U.S. Patent No. US2003/0121270 A1.

3. 2003, R.O.C. Patent No. 00525708.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3