Long-Life Na3V2(PO4)3||Graphite Energy Storage Device Enabled via Regulating the Area Density of Anode

Author:

Pi Yuqiang11,Yang Caisheng1,He Jiangting1,Du Chengyue1,Chen Jingjing1,Xiong Meiqi1

Affiliation:

1. Hubei Engineering University School of Chemistry and Materials Science, , Hubei, Xiaogan 432000 , China

Abstract

Abstract The regular graphite can only provide the negligible capacity for Na-ion intercalation, due to the narrow layer spacing and unstable thermodynamic factor. In this study, an energy storage device is created using the prelithiated graphite and Na3V2(PO4)3&NaClO4-based electrolyte, achieving an initial energy density of 317 W h kg−1 and a long lifespan of 1000 cycles with a 71.3% energy retention under the current rate of 1 C. Additionally, the prelithiated graphite anode could be recognized as an artificial Li metal with a strong skeleton, which reduces the volume changes and provides the growth substrate for Na-ion storage by the plating/stripping behavior. When the Li is depleted by participating in the reconstruction of SEI and the occurrence of complex side reactions, the battery system would die as a result. Therefore, the amounts of excess Li have a significant impact on the electrochemical performance of this device. That is to say that regulating the area density of anode enables a long-life Na3V2(PO4)3||graphite energy storage device.

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3