Characterization of Spinal Needle Buckling Behavior

Author:

Hulburt Tessa1,Booth Jessica2,Pan Peter3,Brown Philip1

Affiliation:

1. School of Biomedical Engineering, Virginia Tech—Wake Forest University, Biotech Place Suite 120, 575 N Patterson Avenue, Winston-Salem, NC 27101

2. Department of Anesthesiology, University of Colorado Health, 1400 E Boulder Street, Colorado Springs, CO 80909

3. Department of Anesthesiology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157

Abstract

Abstract The use of large gauge (G) spinal anesthesia needles can increase complications due to buckling. The purpose of this study was to quantify the behavior of spinal needles in buckling using a repeatable laboratory model. A spinal anesthesia procedure and buckling complication was reproduced in vitro using a custom test fixture designed to match the boundary conditions of needle insertion as performed by an anesthesiologist and a uniaxial servohydraulic material testing machine (MTS, Eden Prairie, MN). Buckling tests were performed with 22 G Whitacre (Medline Industries, Inc., Northfield IL), SPROTTE® (Pajunk, Norcross, GA), and Gertie Marx (International Medical Development, Huntsville, UT) needles (n = 30) in a ballistics gelatin tissue surrogate (Clear Ballistics, Fort Smith, AR). In analyzing axial force results, critical buckling load results were 27.65 ± 0.92 N, signifying that needle fragility is not why buckling is challenging to detect. Force feedback during needle insertion increased linearly due to frictional forces from the tissue surrogate on the needle. The differential between the resultant insertion force and the critical buckling force is more important to the detection of needle buckling than the critical buckling force alone. A very small difference in these two forces could feel like expected resistance increase as the needle is further inserted into the multiple tissue layers. Comparison of the differential between the resultant insertion force and the critical buckling force should be considered when choosing a needle to best detect and prevent a buckling complication.

Publisher

ASME International

Subject

Biomedical Engineering,Medicine (miscellaneous)

Reference18 articles.

1. Broken Spinal Needle: Case Report and Review of the Literature;J. Clin. Anesth.,2014

2. The Effects of Needle Type, Gauge, and Tip Bend on Spinal Needle Deflection;Anesth. Analg.,1996

3. Buckling Prevention Strategies in Nature as Inspiration for Improving Percutaneous Instruments: A Review;Bioinspiration Biomimetics,2016

4. Distance From Skin to the Lumbar Epidural Space in an Obstetric Population;Reg. Anesth.,1990

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3