Information Embedding in Additively Manufactured Parts Through Printing Speed Control

Author:

ElSayed Karim A.1,Panchal Jitesh H.1

Affiliation:

1. Purdue University School of Mechanical Engineering, , West Lafayette, IN 47907

Abstract

Abstract Information lithography in manufacturing is a broad set of techniques for encoding sequences of bits as physical or behavioral features in physical parts. It is an effective approach for part traceability and anti-counterfeiting. Several techniques have recently been proposed for embedding 2D codes in 3D printed parts by local control of geometry or material. This paper presents an approach to embed and retrieve information in additive manufacturing (AM) parts by controlling the printing process parameters. The approach leverages variations in printing speed to encode information on the surface of AM parts. Optical imaging devices, such as 2D scanners and optical profilometers, are employed to read the embedded information, enabling the capture of local height differences on the part surfaces that embody 2D codes such as QR codes. The retrieved information is processed using computer vision techniques such as morphological segmentation and binary classification. First, the impact of variations in the encoding parameters on the information retrieval accuracy is characterized. Then, the feasibility and effectiveness of the proposed scheme are demonstrated through experimental results, showcasing a high accuracy in retrieving encoded messages and successfully distinguishing subtle surface features resulting from varying printing speeds. The proposed approach offers an inexpensive and efficient method for information lithography, allowing for the secure embedding of information, e.g., serial numbers and watermarks, while addressing counterfeiting and security concerns in diverse industries.

Publisher

ASME International

Reference51 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3