Affiliation:
1. Department of Mechanical Engineering, Manufacturing and Thermal-Fluid Engineering Research Center, National Chiao Tung University, Hsinchu, Taiwan
Abstract
Detailed flow and thermal characteristics in transient laminar opposing mixed convection in a vertical plane channel subject to a symmetric heat input are numerically investigated. First, a linear stability analysis was employed to evidence the occurrence of flow bifurcation. Then, the unsteady Navier–Stokes equations along with the continuity and energy equations were respectively integrated by a third-order upwind and power-law finite-difference scheme with the resulting matrices inverted by the Fast Fourier Transform and conjugated gradient methods. Reverse flow in the form of symmetric, elongated recirculating cells is initiated earlier and is stronger in a lower Prandtl number fluid with higher opposing buoyancy and Reynolds number and longer heated section length. At a high opposing buoyancy, sudden flow asymmetry and oscillation occur simultaneously in a nearly steady flow after the initial transient. Periodic flow and thermal evolution are noted in space and time. An empirical equation for the condition for inducing flow oscillation is proposed.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献