Effects of Adiabatic Flame Temperature on Premixed Combustion Stability and Emission Characteristics of Swirl-Stabilized Oxy-Methane Flames

Author:

Nemitallah Medhat A.12,Mansir Ibrahim B.3,Haque Md Azazul42,Abdelhafez Ahmed5,Habib Mohamed A.42

Affiliation:

1. King Fahd University of Petroleum and Minerals IRC-Hydrogen and Energy Storage and Aerospace Engineering Department, , Dhahran 31261 , Saudi Arabia ;

2. K.A. CARE Energy Research & Innovation Center, Dhahran 31261, Saudi Arabia

3. Prince Sattam bin Abdulaziz University Department of Mechanical Engineering, , Alkharj 16273 , Saudi Arabia

4. King Fahd University of Petroleum and Minerals IRC-Hydrogen and Energy Storage and Mechanical Engineering Department, , Dhahran 31261 , Saudi Arabia ;

5. King Fahd University of Petroleum and Minerals IRC-Hydrogen and Energy Storage;, Department of Mechanical Engineering, , Dhahran 31261 , Saudi Arabia

Abstract

Abstract Effects of adiabatic flame temperature (AFT) on stability, combustion, and emission characteristics of swirl-stabilized premixed oxy-methane flames are investigated numerically in a model gas turbine combustor using large-eddy simulations. The oxy-methane flames are investigated over ranges of equivalence ratio (Φ: 0.342–0.954), oxygen fraction (OF: 35%, 50%, and 65%), and adiabatic flame temperatures (AFT: 2100 K, 2300 K, and 2500 K) at fixed inlet velocity of 5.2 m/s with swirled flow at 55 deg under atmospheric pressure. The results show that the shape and size of the inner recirculation zone (IRZ) dominates the flame shape and flame–flow interactions whatever the operating AFT and OF. Almost identical flame shapes with similar OH distributions are obtained at fixed AFT indicating the dominant role of AFT in controlling flame shape and stability of premixed flames. At low to moderate AFTs, the IRZ spreads downstream and becomes stronger resulting in more flame stability and more uniform axial temperature profiles. Fixing the operating AFT does not result in significant changes in temperature profiles due to the similarity of shape and size of the IRZ when fixing the AFT. Flame core temperature, the thickness of the reaction zone, and vorticity increase with AFT at fixed OF and with OF at fixed AFT. The value of the Damköhler number increases in higher AFT and higher OF. Increasing the AFT from 2100 to 2500 K at OF = 65% resulted in an approximately 2.9 time rise in CO emissions.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3