Metrics for Evaluating the Accuracy of Diagnostic Fault Detection Systems

Author:

DePold Hans1,Siegel Jason1,Hull Jon1

Affiliation:

1. United Technologies, P&W, East Hartford, CT

Abstract

This paper presents a method for providing metrics to evaluate the accuracy and cost effectiveness of diagnostic decision support systems. One intention of engine health management (EHM) fault detection systems is to have engines identified for removal and refurbishment as soon as there is evidence of an adverse gas generator trend shift. The benefits of EHM diagnostics and prognostics tests are derived from the resulting improved safety, the reduced operating costs, and most importantly, the good will and trust of the customer. The method presented in this paper is a generalized way of evaluating the performance of some of the tests that are used to make inspection, removal, and maintenance decisions [Ref 1,2]. The detection of faults from shifts in classification data is the first step in EHM systems that use diagnostics and prognostics [Ref 3,4,5]. The minimum parameter shift required to trigger a fault indication is called the threshold. Typically, it is a predetermined multiple of the standard deviation of the parameter measurements. Root cause isolation is usually invoked following these detection tests for the gas path parameter shifts. This paper shows how the achievable accuracy of diagnostic and prognostic system tests can be determined from the signal to noise ratio (SNR), and the system’s design (sensitivity and specificity). From these tests we extract two features, true positives (TP) and false positives (FP) that can be used to compare the accuracy of any simple or complex decision support system. This method is conducive to efficiently handling large amounts of data from multiple sensor tests because it avoids explicit correlation among individual diagnostic tests, and focuses instead on the net results. Each piece of classification information is used to reduce ambiguity. In this approach, the individual diagnostic tests and any data fusion weighting factors can be parametrically varied to optimize the accuracy of the decisions. The resulting plot of TP versus FP is then directly compared to the results of simple idealized classifier systems having known SNRs. This paper applies the receiver operating characteristics (ROC) process to evaluate the potential accuracy of EHM decisions. The paper also shows that the actual accuracy depends on how thresholds are set, and on the local shape of the ROC in the regions where it is used. The method presented can be applied to test the relative accuracy of each phase of the EHM decision-making process. The effects of test accuracies, event probabilities, and consequential event costs on the value of the decision support system are also presented.

Publisher

ASMEDC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3