An In-situ Identification Method for Joint Parameters in Mechanical Structures

Author:

Hong S. W.1,Shamine D. M.1,Shin Y. C.1

Affiliation:

1. School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907

Abstract

This paper presents an improved scheme based on the frequency response functions (FRFs) for in-situ identification of joint parameters of mechanical structures. Despite that measurement of FRFs at joint locations is essential for identifying the joint parameters of a structural dynamic system, it is often impossible to measure FRFs at joint locations. To this end, the present paper suggests an indirect estimation technique for unmeasured FRFs which are required for identification but not available. Theoretical investigation is made to delineate the effects of measurement noise and modeling error on indirect estimation and identification. Two index functions are introduced, which can indicate the quality of estimation or identification along the frequency. The index functions are proven to be useful not only as a weighting function in the identification procedure but also for evaluating the frequency region appropriate for identification. A series of simulations as well as experiments are performed for validation of the method.

Publisher

ASME International

Subject

General Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparative Assessment of Frequency Dependent Joint Properties Using Direct and Inverse Identification Methods;SAE International Journal of Materials and Manufacturing;2015-06-15

2. Identification of dynamic stiffness matrices of elastomeric joints using direct and inverse methods;Mechanical Systems and Signal Processing;2013-08

3. Integration of thermo-dynamic spindle and machining simulation models for a digital machining system;The International Journal of Advanced Manufacturing Technology;2008-02-20

4. Estimation of normal mode and other system parameters of composite laminated plates;Composite Structures;2001-08

5. An in situ modal-based method for structural dynamic joint parameter identification;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2000-05-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3