Performance Analysis and Optimal Design of a Novel Schöenflies-Motion Asymmetric Parallel Mechanism

Author:

Zhu Wei1,Xu Zhu2,Ma Zhiyuan2,Shen Huiping2

Affiliation:

1. Changzhou University College of Mechanical and Engineering, , Changzhou, Jiangsu, 213000 , China

2. Changzhou University College of Mechanical and Engineering, , Changzhou, Jiangsu 213000 , China

Abstract

Abstract Since previous studies of parallel mechanisms (PMs) have tended to favor symmetrical overall configuration to obtain relatively stable kinematic and dynamic performance and to satisfy isotropic requirements. The analysis of kinematic and dynamic performance of asymmetric mechanisms has been an issue of interest. In this paper, an asymmetric SCARA-type PM with four-degrees-of-freedom (DOF) is proposed. First, the orientation characteristic set is calculated to obtain the DOF of the PM. Then, the inverse kinematics and the velocity and acceleration of each branch chain of the mechanism are analyzed. The dynamic model of the mechanism is established according to the principle of virtual work. The workspace of the mechanism is drawn according to the constraints that have been given to the mechanism's kinematic pairs. The singularity, dexterity, motion/force transfer performance, and maximum acceleration performance of the mechanism are also analyzed. On this basis, the kinematic and dynamic performance evaluation indexes of the mechanism are studied. Finally, the workspace and acceleration performance of the mechanism are optimized based on the differential evolution (DE) algorithm to obtain the structural parameters when the mechanism achieves optimal performance. The asymmetric PM proposed in this paper, as well as the algorithm of performance index and optimization method used, can provide some reference value for configuration design and optimization analysis.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3