Enhanced Boiling Heat Transfer of T-Shaped Finned Tubes: Experiment and Simulation

Author:

Ding Peishan1,Xu Jianmin1,Pan Lingfeng1,Tan Haibo1,Zheng Xiaotao1

Affiliation:

1. Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, School of Mechanical and Electrical Engineering, Wuhan Institute of Technology , Wuhan 430205, China

Abstract

Abstract Tubes with enhanced surfaces usually have high boiling heat transfer coefficients which can greatly improve the heat transfer performance under the condition of pool nucleate boiling. In this paper, the boiling heat transfer enhancement behavior was carried out for T-shaped finned tubes, improved T-shaped finned tubes, trapezoidal finned tubes, and smooth tubes. The heat transfer enhancement mechanism in a high boiling medium with different fin shapes was explored. Experimental data show that the boiling heat transfer coefficients of finned tubes with different shapes are 1.4 to 3 times higher than that of the smooth tubes in the same heat load range. Moreover, the tested results were fitted by the correlation formula of heat transfer coefficient, which can be used to guide engineering design. Furthermore, combined with the field coordination theory, the heat transfer characteristics of machining finned tubes were obtained by the software of Fluent. The simulated enhanced heat transfer performances under different heat transfer flux are in good agreement with experimental data.

Funder

National Natural Science Foundation of China

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3