Control of Closed Kinematic Chains Using A Singularly Perturbed Dynamics Model

Author:

Wang Zhiyong1,Ghorbel Fathi H.1

Affiliation:

1. Department of Mechanical Engineering and Material Science, Rice University, Houston, TX, 77005

Abstract

In this paper, we propose a novel approach to the control of closed kinematic chains (CKCs). This method is based on a recently developed singularly perturbed model for CKCs. Conventionally, the dynamics of CKCs are described by differential-algebraic equations (DAEs). Our approach transfers the control of the original DAE system to the control of an artificially created singularly perturbed system in which the slow dynamics corresponds to the original DAE when the perturbation parameter tends to zero. Compared to control schemes that rely on solving nonlinear algebraic constraint equations, the proposed method uses an ordinary differential equation (ODE) solver to obtain the dependent coordinates, hence, eliminates the need for Newton-type iterations and is amenable to real-time implementation. The composite Lyapunov function method is used to show that the closed-loop system, when controlled by typical open kinematic chain schemes, achieves asymptotic trajectory tracking. Simulations and experimental results on a parallel robot, the Rice planar Delta robot, are also presented to illustrate the efficacy of our method.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Reference32 articles.

1. Parallel Robots

2. Force-Feedback Control of Parallel Manipulators;Merlet

3. Trajectory Control of Robot Manipulators With Closed-Kinematic Chain Mechanism;Nguyen

4. Adaptive Control of Manipulators Containing Closed Kinematic Loops;Walker;IEEE Trans. Rob. Autom.

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3