Modulation of Heat Transfer in a Porous Burner Based on Triply Periodic Minimal Surface

Author:

Cheng Zhilong12,Li Song3,Chen Wei4,Wang Qiuwang3

Affiliation:

1. Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, Xi'an Jiaotong University , Xi'an 710049, Shanxi, China ; , Beijing 100084, China

2. Key Laboratory for Thermal Science and Power Engineering, Ministry of Education, Department of Energy and Power Engineering, Tsinghua University , Xi'an 710049, Shanxi, China ; , Beijing 100084, China

3. Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, Xi'an Jiaotong University , Xi'an 710049, Shanxi, China

4. Xi'an Microelectronics Technology Institute (CASC, 771 Institute) , Xi'an 710065, Shanxi, China

Abstract

Abstract The list of reacting flows in porous media applications is quite long, including porous media combustion, syngas production, and fuel cells. Porous media combustion is recognized as a cutting-edge combustion technique for increasing flammability. In this process, heat is transferred from the exothermic reaction zone to the incoming reactants through porous media. This role of porous media distinguishes reacting flows in porous media from free combustion processes. Local heat transfer, such as solid conduction, solid–solid radiation, and solid–gas convection, as well as the response behavior, are affected by the topology of the porous material. Theoretical studies indicate that continuously graded porous materials can significantly enhance the performance benefits of heat transfer. However, topology design is challenging for smooth graded porous media, and thus investigations of combustion within graded porous media are still required. In this study, we constructed a porous structure of type W/P/D/G (porosity ε = 0.3–0.5, hydraulic diameter dh = 1.33–3.86 mm) using a triply periodic minimal surface (TPMS), and a computational model of the combustion reaction in porous media was established to compare the range of flame stability within different pore types. In addition, topology gradation was achieved via TPMS to modulate the heat transfer to ensure the dependable functioning of premixed flames and improved heat recirculation. Heat transfer in the graded TPMS-based porous structure was analyzed numerically. The conclusions obtained from this study can effectively address the aforementioned challenges related to porous media burner design.

Funder

National Natural Science Foundation of China

Xi'an Jiaotong University

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3