Response Analysis of a Nonstationary Lowering Operation for an Offshore Wind Turbine Monopile Substructure

Author:

Li Lin1,Gao Zhen2,Moan Torgeir2

Affiliation:

1. Centre for Ships and Ocean Structures (CeSOS); Centre for Autonomous Marine Operations and Systems (AMOS); Department of Marine Technology, Norwegian University of Science and Technology (NTNU), Trondheim NO-7491, Norway e-mail:

2. Centre for Ships and Ocean Structures (CeSOS); Centre for Autonomous Marine Operations and Systems (AMOS); Department of Marine Technology, Norwegian University of Science and Technology (NTNU), Trondheim NO-7491, Norway

Abstract

This study addresses numerical modeling and time-domain simulations of the lowering operation for installation of an offshore wind turbine monopile (MP) with a diameter of 5.7 m and examines the nonstationary dynamic responses of the lifting system in irregular waves. Due to the time-varying properties of the system and the resulting nonstationary dynamic responses, numerical simulation of the entire lowering process is challenging to model. For slender structures, strip theory is usually applied to calculate the excitation forces based on Morison's formula with changing draft. However, this method neglects the potential damping of the structure and may overestimate the responses even in relatively long waves. Correct damping is particularly important for the resonance motions of the lifting system. On the other hand, although the traditional panel method takes care of the diffraction and radiation, it is based on steady-state condition and is not valid in the nonstationary situation, as in this case in which the monopile is lowered continuously. Therefore, this paper has two objectives. The first objective is to examine the importance of the diffraction and radiation of the monopile in the current lifting model. The second objective is to develop a new approach to address this behavior more accurately. Based on the strip theory and Morison's formula, the proposed method accounts for the radiation damping of the structure during the lowering process in the time-domain. Comparative studies between different methods are presented, and the differences in response using two types of installation vessel in the numerical model are also investigated.

Publisher

ASME International

Subject

Mechanical Engineering,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3