Estimation of Aircraft Engine Flight Mission Severity Caused by Erosion

Author:

Brandes Tim1,Koch Christian1,Staudacher Stephan1

Affiliation:

1. Institute of Aircraft Propulsion Systems, University of Stuttgart, Stuttgart 70569, Germany,

Abstract

Abstract More and more attention is being devoted to assessing severity of the engine operation for a high number of flights in a minimum of time. Compressor erosion is one of the physical phenomena contributing to this severity. Hence, an effective method is developed which allows a general judgment of the severity of engine operation with regard to compressor erosion. The shortening of the camber line at blade leading edge is selected as the parameter describing the degree of severity. The particle impingement conditions experienced by compressor blades throughout a flight mission are computed using a flight mission simulation and a non-dimensional engine model. Local flow conditions of all compressor blade rows are derived from mean line computations. A dimensional analysis of a straight through swirling annulus flow led to a simplified model of particle separation within the compressor blade rows. It turns out that bypass ratio, bleed setting, and degree of particle separation changing from operating point to operating point are significant drivers of erosion. Fan root and booster suffer less from compressor erosion than the high pressure compressor. The flight segments taxi, take-off, take-off climb, climb, and cruise are significantly impacting the severity of a flight mission with regard to compressor erosion.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3