Automated Design Optimization of a Small-Scale High-Swirl Cavity-Stabilized Combustor

Author:

Briones Alejandro M.1,Burrus David L.2,Sykes Joshua P.2,Rankin Brent A.3,Caswell Andrew W.3

Affiliation:

1. University of Dayton Research Institute, Dayton, OH 45469 e-mail:

2. Innovative Scientific Solutions, Inc., Dayton, OH 45459 e-mail:

3. Air Force Research Laboratory, WPAFB, OH 45433 e-mail:

Abstract

A numerical optimization study is performed on a small-scale high-swirl cavity-stabilized combustor. A parametric geometry is created in cad software that is coupled with meshing software. The latter automatically transfers meshes and boundary conditions to the solver, which is coupled with a postprocessing tool. Steady, incompressible three-dimensional simulations are performed using a multiphase Realizable k-ε Reynolds-averaged Navier-Stokes (RANS) approach with a nonadiabatic flamelet progress variable (FPV) model. There are nine geometrical input parameters. There are five output parameters, viz., pattern factor (PF), RMS of the profile factor deviation, averaged exit temperature, averaged exit swirl angle, and total pressure loss. An iterative design of experiments (DOE) with a recursive Latin hypercube sampling (LHS) is performed to filter the most important input parameters. The five major input parameters are found with Spearman's order-rank correlation and R2 coefficient of determination. The five input parameters are used for the adaptive multiple objective (AMO) optimization. This provided a candidate design point with the lowest weighted objective function, which was verified through computational fluid dynamic (CFD) simulation. The combined filtering and optimization procedures improve the baseline design point in terms of pattern and profile factor. The former halved from that of the baseline design point, whereas the latter turned from an outer peak to a center peak profile, closely mimicking an ideal profile. The exit swirl angle favorably increased 25%. The averaged exit temperature and the total pressure losses remained nearly unchanged from the baseline design point.

Funder

Air Force Research Laboratory

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3