Affiliation:
1. University of Dayton Research Institute, Dayton, OH 45469 e-mail:
2. Innovative Scientific Solutions, Inc., Dayton, OH 45459 e-mail:
3. Air Force Research Laboratory, WPAFB, OH 45433 e-mail:
Abstract
A numerical optimization study is performed on a small-scale high-swirl cavity-stabilized combustor. A parametric geometry is created in cad software that is coupled with meshing software. The latter automatically transfers meshes and boundary conditions to the solver, which is coupled with a postprocessing tool. Steady, incompressible three-dimensional simulations are performed using a multiphase Realizable k-ε Reynolds-averaged Navier-Stokes (RANS) approach with a nonadiabatic flamelet progress variable (FPV) model. There are nine geometrical input parameters. There are five output parameters, viz., pattern factor (PF), RMS of the profile factor deviation, averaged exit temperature, averaged exit swirl angle, and total pressure loss. An iterative design of experiments (DOE) with a recursive Latin hypercube sampling (LHS) is performed to filter the most important input parameters. The five major input parameters are found with Spearman's order-rank correlation and R2 coefficient of determination. The five input parameters are used for the adaptive multiple objective (AMO) optimization. This provided a candidate design point with the lowest weighted objective function, which was verified through computational fluid dynamic (CFD) simulation. The combined filtering and optimization procedures improve the baseline design point in terms of pattern and profile factor. The former halved from that of the baseline design point, whereas the latter turned from an outer peak to a center peak profile, closely mimicking an ideal profile. The exit swirl angle favorably increased 25%. The averaged exit temperature and the total pressure losses remained nearly unchanged from the baseline design point.
Funder
Air Force Research Laboratory
Subject
Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献