High Efficiency Active Damping on a Fan Rotor Blade in Case Of Resonant Vibrations by Means of Piezoelectric Actuators

Author:

Rossi Andrea1,Botta Fabio1,Giovannelli Ambra1,Belfiore Nicola Pio1

Affiliation:

1. University of Roma Tre, Rome, Italy

Abstract

Abstract Severe resonant vibration is one of the main roots of turbomachinery blades failure. Forced response issues arise when the blades work in non-uniform flow fields. As a result unsteady aerodynamic pressures occur on the surfaces of the blade. If the frequency of the aerodynamic excitation matches an eigenfrequency of the blade, the vibration level may considerably increase and a drop in the life-cycle of the component could be entailed. The resonant vibration conditions could be identified at the design level by means of the Campbell diagram. Unfortunately, it is not possible to avoid all the resonant conditions, hence the mitigation of vibration has always been of the utmost importance for turbomachinery designers. Moreover an active damping system based on piezoelectric (PZT) actuators which is capable of tuning its behavior according to the resonant excitation, may be considered very attractive. In this work the forced response of a fan rotor blade, due to a stationary inlet flow distortion resulting from the presence of upstream struts, is taken into account. Some resonant conditions have been analyzed by means of Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) simulations. Thereafter a novel approach based on a proper distribution of the potential supplied to the electrodes of each PZT pair, in order to maximize the damping efficiency, is applied to the case of a plausible fan blade. The outcomes show that the proposed system is able to efficiently damp each resonant excitation and enhance the structural integrity of the blade.

Publisher

American Society of Mechanical Engineers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3