Characterization of Two-Phase Wakes in an Upward Adiabatic Liquid-Gas Flow Around a Cylinder

Author:

Kim Dohwan1,Rau Matthew J.2

Affiliation:

1. Department of Mechanical Engineering, The Pennsylvania State University , 137 Reber Bldg, University Park, PA 16802

2. Mechanical and Aerospace Engineering Department, The George Washington University , 800 22nd Street NW, Washington, DC 20052

Abstract

AbstractTwo-phase wakes generated from a cylinder in a crossflow were experimentally studied. A water–air mixture traveled through a vertical water channel with a rectangular cross section, in which a cylinder was installed horizontally. Liquid Reynolds numbers, based on a cylinder diameter of 9.5 mm, were varied from Re = 100 to 3,000; the air superficial velocities were varied from jg = 0.06 m/s to 0.60 m/s; and mean bubble diameters were varied from 0.48 mm to 3.5 mm. Void fraction distribution in the wake of the cylinder was determined from high-speed visualizations, where a correlation was applied to the shadow fraction measurements to account for overlapping bubble images. It divided the wakes into a liquid-phase region with a low void fraction relative to its freestream condition (α/α∞<1/2) and a bubble-trapping region with a relatively high void fraction (α/α∞>2). The liquid-phase region occurred in all flow conditions, but its length decreased with increasing Reynolds number. In contrast, the bubble-trapping region occurred only at relatively high Reynolds numbers depending on the bubble size and air superficial velocity. Transitional bubble-trapping behavior was identified at Re = 1,200 for the 3.5 mm bubbles, where bubble trapping only occurred at low air superficial velocities. Once the bubble-trapping region developed sufficiently, the location of the maximum void fraction was consistently located at y/D = 1.3–1.5 downstream from the center of the cylinder.

Publisher

ASME International

Subject

Mechanical Engineering

Reference33 articles.

1. A Review of Heat Exchanger Tube Bundle Vibrations in Two-Phase Cross-Flow;Nucl. Eng. Des.,2004

2. Two-Phase Flow and Heat Transfer Across Horizontal Tube Bundles-a Review;Heat Transfer Eng.,2007

3. Two-Phase Operation of Microchannel Heat Sinks,2012

4. Numerical Investigation of Boiling Heat Transfer on the Shell-Side of Spiral Wound Heat Exchanger;Heat Mass Transfer,2016

5. A Parametric Study of Boiling Heat Transfer in a Horizontal Tube Bundle;ASME J. Heat Mass Transfer-Trans. ASME,1988

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3