Development and Ex Vivo Validation of Novel Force-Sensing Neochordae for Measuring Chordae Tendineae Tension in the Mitral Valve Apparatus Using Optical Fibers With Embedded Bragg Gratings

Author:

Paulsen Michael J.1,Bae Jung Hwa2,Imbrie-Moore Annabel M.3,Wang Hanjay1,Hironaka Camille E.1,Farry Justin M.1,Lucian Haley1,Thakore Akshara D.1,Cutkosky Mark R.2,Joseph Woo Y.4

Affiliation:

1. Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305

2. Department of Mechanical Engineering, Stanford University, Stanford, CA 94305

3. Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305; Department of Mechanical Engineering, Stanford University, Stanford, CA 94305

4. Norman E. Shumway Professor and Chair Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305; Department of Bioengineering, Stanford University, Stanford, CA 94305

Abstract

AbstractFew technologies exist that can provide quantitative data on forces within the mitral valve apparatus. Marker-based strain measurements can be performed, but chordal geometry and restricted optical access are limitations. Foil-based strain sensors have been described and work well, but the sensor footprint limits the number of chordae that can be measured. We instead utilized fiber Bragg grating (FBG) sensors—optical strain gauges made of 125 μm diameter silica fibers—to overcome some limitations of previous methods of measuring chordae tendineae forces. Using FBG sensors, we created a force-sensing neochord (FSN) that mimics the natural shape and movement of native chordae. FBG sensors reflect a specific wavelength of light depending on the spatial period of gratings. When force is applied, the gratings move relative to one another, shifting the wavelength of reflected light. This shift is directly proportional to force applied. The FBG sensors were housed in a protective sheath fashioned from a 0.025 in. flat coil, and attached to the chordae using polytetrafluoroethylene suture. The function of the force-sensing neochordae was validated in a three-dimensional (3D)-printed left heart simulator, which demonstrated that FBG sensors provide highly sensitive force measurements of mitral valve chordae at a temporal resolution of 1000 Hz. As ventricular pressures increased, such as in hypertension, chordae forces also increased. Overall, FBG sensors are a viable, durable, and high-fidelity sensing technology that can be effectively used to measure mitral valve chordae forces and overcome some limitations of other such technologies.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3