Novel Curvature-Based Airfoil Parameterization for Wind Turbine Application and Optimization

Author:

Balasubramanian Karthik1,Turner Mark G.1,Siddappaji Kiran1

Affiliation:

1. University of Cincinnati, Cincinnati, OH

Abstract

The direct proportionality of streamline curvature to the pressure gradient normal to it causes the dependence of surface pressure loading on geometry curvature. This allows for the use of geometry curvature as a direct and aerodynamically meaningful interface to modify and improve performance of wind turbine sections. A novel blade parameterization technique driven by specification of meanline second derivative and a thickness distribution is presented. This technique is implemented as T-Blade3 which is an already existing in-house open-executable. The second derivative which is indicative of curvature, is used, enabling exploration of a large design space with minimal number of parameters due to the use of B-spline control points, capable of producing smooth curves with only a few points. New thickness and curvature control capabilities have been added to TBlade3 for isolated and wind turbine airfoils. The parameterization ensures curvature and slope of curvature continuity on the airfoil surface which are critical to smooth surface pressure distribution. Consequently, losses due to unintentional pressure spikes are minimized and likelihood of separation reduced. As a demonstration of the parameterization capability, Multi-Objective optimization is carried out to maximize wind turbine efficiency. This is achieved through an optimization tool-chain that minimizes a weighted sum of the drag-to-lift ratios over a range of angles of attack and sectional Reynolds numbers using a Genetic Algorithm. This allows for radial Reynolds number variation and ensures efficiency of wind turbine blade with twist incorporated. The tool-chain uses XFOIL to evaluate drag polars. This is implemented in MATLAB and Python in serial and in parallel with the US Department of Energy optimization system, DAKOTA. The Python and DAKOTA versions of the code are fully open-source. The NREL S809 horizontal axis wind turbine laminar-flow airfoil which is 21% thick has been used as a benchmark for comparison. Hence, the optimization is carried out with the same thickness-to-chord ratio. Drag coefficient improvement ranging from 17% to 55% for Cl between 0.3 and 1 was achieved.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reverse engineering EEE transonic compressor fan blade;AIAA SCITECH 2023 Forum;2023-01-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3