Aerodynamic Blade Row Interactions in an Axial Compressor—Part I: Unsteady Boundary Layer Development

Author:

Mailach Ronald1,Vogeler Konrad1

Affiliation:

1. Dresden University of Technology, Institute for Fluid Mechanics, 01062 Dresden, Germany

Abstract

This two-part paper presents experimental investigations of unsteady aerodynamic blade row interactions in the first stage of the four-stage low-speed research compressor of Dresden. Both the unsteady boundary layer development and the unsteady pressure distribution of the stator blades are investigated for several operating points. The measurements were carried out on pressure side and suction side at midspan. In Part I of the paper the investigations of the unsteady boundary layer behavior are presented. The experiments were carried out using surface-mounted hot-film sensors. Additional information on the time-resolved flow between the blade rows were obtained with a hot-wire probe. The unsteady boundary layer development is strongly influenced by the incoming wakes. Within the predominantly laminar boundary layer in the front part of the blade a clear response of the boundary layer to the velocity and turbulence structure of the incoming wakes can be observed. The time-resolved structure of the boundary layer for several operating points of the compressor is analyzed in detail. The topic “calmed regions,” which can be coupled to the wake passing, is discussed. As a result an improved description of the complex boundary layer structure is given.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3