Affiliation:
1. Mechanics Department, Westinghouse Research Laboratories, East Pittsburgh, Pa.
Abstract
Abstract
An analysis of creep deformations in rotating disks based on the Tresca criterion and the associated flow rule is presented. Assuming steady-state creep conditions and a creep rate equal to a function of stress times a function of time, the method is applied to the following cases: (a) Disk with constant thickness and constant temperature, (b) disk with variable thickness and constant temperature, and (c) disk with variable thickness and variable temperature. In many cases, the equations can be expressed in closed form. Comparison is made with test results on rotating disks at elevated temperature as reported in a previous paper. Based on certain stress-creep-rate relations, the method is also applied to the problem of calculating the transient change in stress when the stress distribution changes from an initial to a steady-state condition during the starting period. It is suggested that the simplification effected by the use of these methods may be of value for design purposes pending the development of more accurate methods based on test results.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献