A Model for Competency-Based Grading and Its Effect On Student Outcomes in a Biomechanics Course

Author:

Fischer Kenneth1,Fischer Christopher2

Affiliation:

1. Department of Mechanical Engineering, University of Kansas, Learned Hall, Room 3138, 1530 W. 15th St, Lawrence, KS 66045

2. Department of Physics and Astronomy, University of Kansas, Malott Hall, Room 1076, 1251 Wescoe Hall Dr.

Abstract

Abstract Competency-based grading (CBG) can take different forms in different subject areas. We present a method for implementing CBG in a biomechanics course with nine primary learning objectives. Competency in each learning objective is measured by the student's ability to correctly answer knowledge questions and solve analytical problems in the field of biomechanics. The primary goal of implementing CBG was to provide more opportunities for lower-performing students to learn the material and to demonstrate that learning. To determine the efficacy of CBG to improve student learning, the primary measure was course grade distribution before and after implementation of CBG. The course grade distribution data indicated that CBG has primary helped mid-performing students to improve their grades. Because of the limitations of course grades as a measure of learning, we also performed analysis of student performance on successive attempts indicates initial and secondary attempts are best, with student success declining on subsequent attempts. Anecdotally, many students improved performance, and thus their grade, on the (optional) final exam attempts. Limitations of the study include the limited course offerings with CBG (three), and that effects of COVID-19 may be confounding CBG data. Also, the approach places nearly all the grade on quizzes or exams. However, the approach could be modified to include homework grades, projects, and the like. Overall, the student learning in this course and implementation appears to be only positively affected, so this approach appears to have benefits in a biomechanics course.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3