Heat Transfer and Pressure Drop Correlations for Twisted-Tape Inserts in Isothermal Tubes: Part II—Transition and Turbulent Flows

Author:

Manglik R. M.1,Bergles A. E.1

Affiliation:

1. Heat Transfer Laboratory, Rensselaer Polytechnic Institute, Troy, NY 12180-3590

Abstract

Thermal-hydraulic design correlations are developed to predict isothermal f and Nu for in-tube, turbulent flows with twisted-tape inserts. Experimental data taken for water and ethylene glycol, with y = 3.0, 4.5, and 6.0, are analyzed, and various mechanisms attributed to twisted tapes are identified. Tube blockage and tape-induced vortex mixing are the dominant phenomena that result in increased heat transfer and pressure drop; for loose- to snug-fitting tapes, the fin effects are insignificant. The limiting case of a straight tape insert correlates with the hydraulic-diameter-based smooth tube equation. Tape twist effects are thus isolated by normalizing the data with the asymptotic predictions for y = ∞, and the swirl effects are found to correlate with Re and l/y. The validity of the final correlations is verified by comparing the predictions with previously published data, which include both gases and liquids, under heating and cooling conditions and a wide range of tape geometries, thereby establishing a very generalized applicability. Finally, correlations for laminar (presented in the companion Part I paper) and turbulent flows are combined into single, continuous equations. For isothermal f, the correlation describes most of the available data for laminar-transition-turbulent flows within ±10 percent. For Nu, however, a family of curves is needed due to the nonunique nature of laminar-turbulent transition.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3