Fluid Flow Analysis of Neonatal Dual-Lumen Cannulas for Venovenous Extracorporeal Membrane Oxygenation

Author:

Sawka Danielle M.1,Su Yunxing2,Monteagudo Julie3,Zenit Roberto2

Affiliation:

1. The Warren Alpert Medical School of Brown University , 70 Ship Street Box G-9486, Providence, RI 02903

2. Center for Fluid Mechanics, Brown University School of Engineering , 345 Brook St, Providence, RI 02912

3. Pediatric Surgery, The Warren Alpert Medical School of Brown University , 70 Ship Street Box G-M1, Providence, RI 02903

Abstract

Abstract Hemolysis persists as a common and serious problem for neonatal patients on extracorporeal membrane oxygenation (ECMO). Since the cannula within the ECMO circuit is associated with hemolysis-inducing shear stresses, real-world internal fluid flow measurements are urgently needed to understand the mechanism and confirm computational estimates. This study appears to be the first experimental study of fluid flow inside commercial ECMO dual-lumen cannulas (DLCs) and first particle image velocimetry (PIV) visualization inside a complicated medical device. The internal geometries of four different opaque neonatal DLCs, both atrial and bicaval positioning geometries each sized 13 Fr and 16 Fr, were replicated by three-dimensional printing clear lumen scaled-up models, which were integrated in a circuit with appropriate ECMO flow parameters. PIV was then used to visualize two-dimensional fluid flow in a single cross section within the models. An empirical model accounting for shear stress and exposure time was used to compare the maximum expected level of hemolysis through each model. The maximum measured peak shear stress recorded was 16±2 Pa in the top arterial bicaval 13 Fr model. The atrial and 16 Fr cannula models never produced greater single-pass peak shear stress or hemolysis than the bicaval and 13 Fr models, respectively, and no difference was found in hemolysis at two different flow rates. After 5 days of flow, small DLC-induced hemolysis values for a single pass through each cannula were modeled to linearly accumulate and caused the most severe hemolysis in the bicaval 13 Fr DLC. Engineering and clinical solutions to improve cannula safety are proposed.

Funder

Brown University

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3