Data-Driven Aircraft Modeling for Robust Reinforcement Learning Control Synthesis With Flight Test Validation

Author:

Benyamen Hady1ORCID,Chowdhury Mozammal1ORCID,Keshmiri Shawn2

Affiliation:

1. University of Kansas Flight Research Lab, Department of Aerospace Engineering, University of Kansas , Lawrence, KS 66045

2. Charles E. & Mary Jane Spahr Professor, University of Kansas Flight Research Lab, Department of Aerospace Engineering, University of Kansas , Lawrence, KS 66045

Abstract

Abstract Low-fidelity engineering-level dynamic models are commonly employed while designing uncrewed aircraft flight controllers due to their rapid development and cost-effectiveness. However, during adverse conditions, or complex path-following missions, the uncertainties in low-fidelity models often result in suboptimal controller performance. Aircraft system identification techniques offer alternative methods for finding higher fidelity dynamic models but can be restrictive in flight test requirements and procedures. This challenge is exacerbated when there is no pilot onboard. This work introduces data-driven machine learning (ML) to enhance the fidelity of aircraft dynamic models, overcoming the limitations of conventional system identification. A large dataset from twelve previous flights is utilized within an ML framework to create a long short-term memory (LSTM) model for the aircraft's lateral-directional dynamics. A deep reinforcement learning (RL)-based flight controller is developed using a randomized dynamic domain created using the LSTM and physics-based models to quantify the impact of LSTM dynamic model improvements on controller performance. The RL controller performance is compared to other modern controller techniques in four actual flight tests in the presence of exogenous disturbances and noise, assessing its tracking capabilities and its ability to reject disturbances. The RL controller with a randomized dynamic domain outperforms an RL controller trained using only the engineering-level dynamic model, a linear quadratic regulator controller, and an L1 adaptive controller. Notably, it demonstrated up to 72% improvements in lateral tracking when the aircraft had to follow challenging paths and during intentional adverse onboard conditions.

Funder

Armstrong Flight Research Center

Federal Aviation Administration

Publisher

ASME International

Reference64 articles.

1. Analysis of Aircraft Simulation Validity in Different Flight Conditions,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3