Innovative Flow-Field Combination Design on Direct Methanol Fuel Cell Performance

Author:

Jung Guo-Bin1,Su Ay1,Tu Cheng-Hsin2,Weng Fang-Bor1,Chan Shih-Hung1

Affiliation:

1. Fuel Cell Center and Department of Mechanical Engineering, Yuan Ze University, Chung-Li, Taoyuan, 320, Taiwan

2. Department of Mechanical Engineering, Yuan Ze University, Chung-Li, Taoyuan, 320, Taiwan

Abstract

The flow-field design of direct methanol fuel cells (DMFCs) is an important subject about DMFC performance. Flow fields play an important role in the ability to transport fuel and drive out the products (H2O,CO2). In general, most fuel cells utilize the same structure of flow field for both anode and cathode. The popular flow fields used for DMFCs are parallel and grid designs. Nevertheless, the characteristics of reactants and products are entirely different in anode and cathode of DMFCs. Therefore, the influences of flow fields design on cell performance were investigated based on the same logic with respect to the catalyst used for cathode and anode nonsymmetrically. To get a better and more stable performance of DMFCs, three flow fields (parallel, grid, and serpentine) utilized with different combinations were studied in this research. As a consequence, by using parallel flow field in the anode side and serpentine flow-field in the cathode, the highest power output was obtained.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3